
Smart Utilities Advanced Monitoring Solutions for Water & Wastewater

PRESENTED BY: KEN HAYES – SENIOR SALES MANGER NATIONAL CORE+ TEAM

Today's Agenda

© Core & Main All Rights Reserved. Confidential and Proprietary Information.

Who is Core and Main?

Financial Performance: Market Gap: (NYSE: CNM)

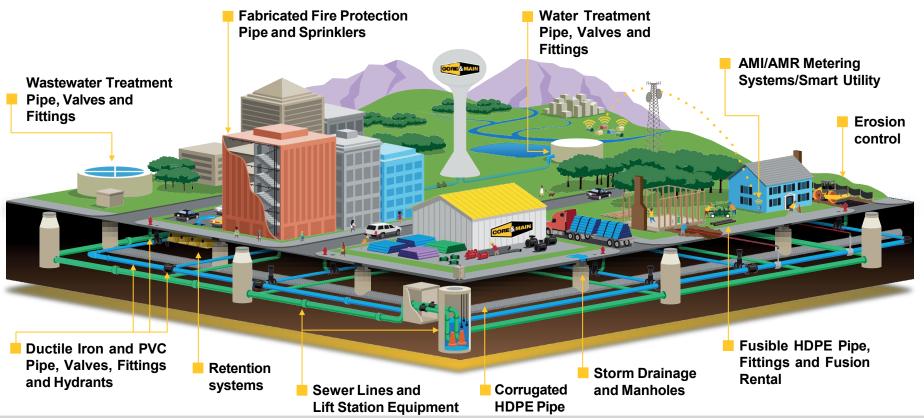
of Locations:

350+ branches

of Employees:

4,100+

History: 100+ years in business


Headquarters:

St. Louis

PRODUCTS AND SERVICES

Implications

- Negative Customer Image
- Bad Press/ Social Media
- Losing Revenue
- Utility Confidence
- Failing Infrastructure
- Service Disruption
- Unplanned Costs
- Complex Agency Reporting
- Regulatory Violations/Fines

Town of Chelmsford cited by MassDEP for sewage violations PUBLISHED: May 25, 2021 at 5:22 p.m.

State finds 24 'possible violations' after massive Winter Springs fish kill Department of Environmental protection discovers wastewater plant 'bypassed the filtration and disinfection systems'

Florida Water System Hack Highlights Challenges for Public Utility Cybersecurity

Wednesday, February 24, 2021

Drinking-water quality, ongoing sewage spill: Slidell-area utility cited for violations

BY SARA PAGONES | STAFF WRITER PUBLISHED APR 12, 2021 AT 12:27 PM | UPDATED APR 12, 2021 AT 5:33 PM 🕏 📕 2 min to read

MPCA fines Jordan Sands for wastewater violations

ML&P fined \$230K for wastewater effluent violations

Former Sioux City Wastewater Treatment Plant Superintendent Sentenced to Federal Prison for Violating the Clean Water Act

Fort Myers faces over \$500,000 in fines for sewage in city water

Updated:February 11, 2021 3:33 PM EST

City of Wooster to Address Violations of Clean Water Act at City's Wastewater Treatment Plant

Questions to Ponder....

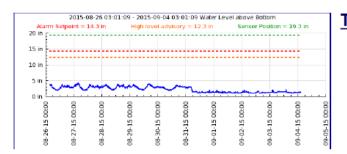
- What are your top issues?
- Have you spent money on particular areas,(i.e. manholes, basins, lift stations, water quality) BUT you still have recurring issues?
- What technology, if any, have you deployed?
- What studies have been performed?
- Have you engaged your engineers and trusted partners in working on issues?

CORE+ AMS WW Solutions

SSO/CSO Level Monitoring

- Proactive Blockage and Overflow
 Detection and Notification before an overflow
 occurs
- Targeted and efficient resource dispatch to optimize cleanout & maintenance activities
- Flow meters, manhole level sensors, network communications
- Integrated data analytics and management platform
- Machine learning-enabled trend advisories
- Near real-time actionable data



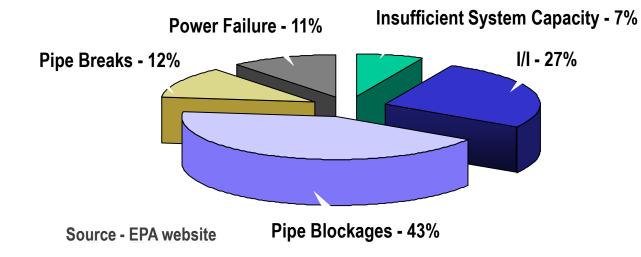


Keeping a close eye on SSO's

Trending Examples

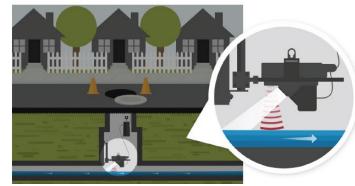
<u>Trend Rise</u>

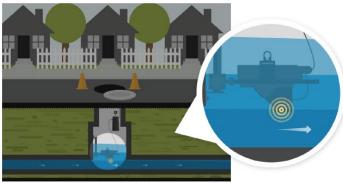
- Downstream restriction
 - FOG
 - Roots
 - Foreign obstruction
 - Lift station down


Trend Fall

- Upstream restriction
 - FOG
 - Roots
 - Foreign obstruction
 - Lift station down

Sanitary Sewer Overflows


Based on a sample of six Cities Causes of SSOs can vary significantly


CORE+ AMS WW Solutions

Flow Monitoring & I/I Analysis

- Near real-time identification of rain-derived inflow and infiltration (I/I) **sources**
- Wet and dry weather pattern analysis
- Determines precise amounts of Inflow & Infiltration
- Prioritizes basin/lift station maintenance activities and **reduces mobilizations**
- Flow/velocity interval measurements, sewer basin rainfall, and the basin's water consumption data
- Actionable data via dashboards, graphing, reporting, and machine learning-enabled analytics

FLO-DAR

Doppler radar captures velocity and ultrasonic measures level

Surcharge Velocity Sensor

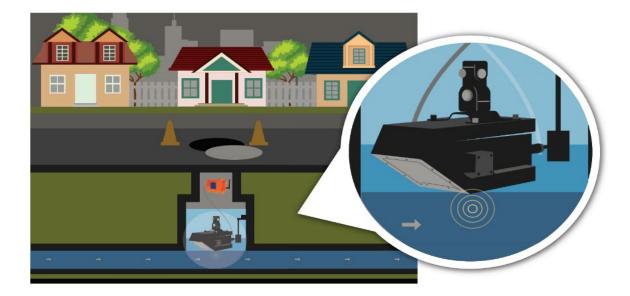
Electromagnetic technology and a pressure transducer capture data during surcharge scenario

CORE+ AMS WW SOLUTIONS FlexFlow IQ NON-CONTACT PULSE-RADAR FLOWMETER

CORE

CORE+ AMS WW SOLUTIONS FlexFlow IQ NON-CONTACT PULSE-RADAR FLOWMETER

- Alden-Labs Verified and Validated for Accurate Flow Measurement ± 0.4 inch or ± 10 mm
- Communicates via Cellular, Satellite, Sensus, LoRaWAN, Itron Gen5 and Modbus
- Simple integration with SCADA, PLC or telemetry systems
- Perfect solution for difficult flow conditions: high solids content, high temperature, shallow and caustic flows, high velocities and large open channels



FLEXFLOW IQ

Doppler radar captures velocity and radar measures level

SURCHARGE LEVEL SENSOR

Pressure transducer capture data during surcharge scenario

WIRELESS LOGGER

Communicates via Cellular, Satellite, Sensus, LoRaWAN, Itron Gen5 and Modbus

How Do We Use This...

Taphing Create t			-		Flo Dr Rainfa Flow 1hr Avo R	End Date: Dec 20, 2006 V Channel: Weit Flow (cf(s) V Westher Pattern: Winter I Gauge: Demo Rainfall US (in) DIFlow 24th Avg RDII Flow DWF elope Method (also known as the Q vs. I method).				
ECT CHANNELS:	Aut	O IGI Automati	any connates minu	ation and innow in your :	server now data using the for Env	aupe meulou (also nilowii as ule q vs. i ineulou).				
Temp	INFI	INITII - BH-04 // ENVEL	OPE // STORM EVENTS							
Velocity										
✓ G SK ✓ G PS601GPDII		ct Storm Event	END	6 HR MAX RAINFALL	PEAK 1 HR AVG RDII FLOW	RDII Chart for Storm Event #1 - 2013-12-22 06:15 to 2013-12-23 13:15				
614NF		2013-12-22 06:15	2013-12-23 13:15	1.53 in	0.34 MGD	BH-RG1 (n) P-Row Rate (MGD) =Dry Weather Pow =1 Hr Avg RDI Flow				
63NF	a second	2013-12-22 06.13	2013-12-23 13.13	1.48 in	0.62 MGD					
658NF 666NF		2014-01-09 22:30	2014-01-11 12:00	1.48 in 1.29 in	1.82 MGD					
667NF						30 0.00- C 0.01- 0.02- 0.02-				
668NF		2014-03-16 04:30	2014-03-16 11:30	1.01 in	0.29 MGD					
669NF		2017-04-05 07:30	2017-04-05 22:15	0.95 in	0.62 MGD					
67NF 683NF		2013-12-28 15:00	2013-12-29 05:45	0.93 in	0.29 MGD					
685NF		2017-01-21 09:00	2017-01-21 13:15	0.78 in	0.67 MGD	or-				
691NF	8	2015-07-31 19:45	2015-07-31 22:15	0.78 in	0.17 MGD					
🔲 🍈 692NF	9	2015-12-23 00:45	2015-12-26 00:30	0.76 in	0.78 MGD	So the second se				
- A 704NE	10	2017-06-20 10:45	2017-05-20 23:00	0.75 in	0.22 MGD	and Wednesday Attacks of the second s				
CT A DATE RANGE	11	2015-08-22 19:00	2015-08-23 10:15	0.75 in	0.67 MGD	ma 11 ma				
st 7 Days	12	2014-02-21 03:45	2014-02-21 06:45	0.70 in	0.23 MGD	es-				
1	13	2013-12-14 07:45	2013-12-15 01:15	0.67 in	0.21 MGD					
2019-08-09 00:00	14	2016-02-02 21:45	2016-02-03 11:45	0.67 in	0.64 MGD	and the with what was				
	15	2014-05-14 18:00	2014-05-15 07:45	0.65 in	0.36 MGD	0.0 12 PM 06 PM Dec 22 06 AM 12 PM 06 PM Mon 23 06 AM 12 PM 06 P				
2019-08-16 23:59		100		WAY A	-	2019-06-16 00 00 2019-06-17 00 00				

CORE+ AMS WW Solutions

- Practical and proactive approach to monitoring water quality to increase the public health level of service
- Help the utility identify and address conditions leading to fish kills, algae blooms, and other environmental issues
- Battery-powered Internet of Things (IoT) devices/sensors and analytics software
- Monitors water quality parameters including Pressure, Level, Conductivity, Turbidity, Total Chlorine, Free Chlorine, Temperature, pH, Blue-Green Algae, Chlorophyll, Dissolved Oxygen, and Hydrogen Sulfide

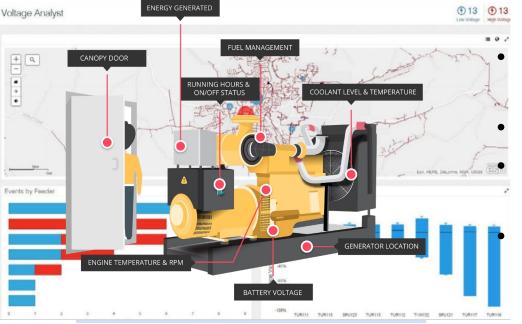
Pump Station Emergency Level Monitoring

- Proactive **monitoring of the levels** inside their sewer pump stations during emergency operating conditions
- Pump station data analysis to ensure the pumps are operating at optimal energy and performance efficiencies
- Near real-time awareness of emergency generators' operational status and fuel levels
- Route maintenance personnel to **mission**critical infrastructure requiring the most urgent intervention
- Battery-powered Internet of Things (IoT) devices/sensors and analytics software

Force Main Monitoring



How do we do it?



© Core & Main All Rights Reserved. Confidential and Proprietary Information.

Pump Station Optimization & Resiliency

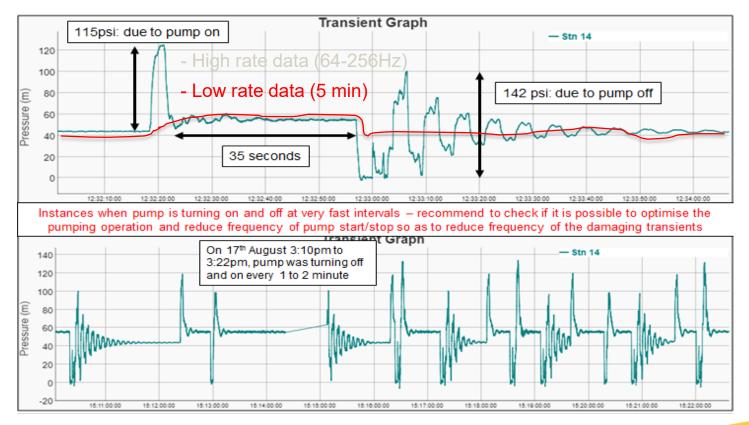
Turn your Pump Station into an accurate flow meter.

CORE

Advanced Pump Curve Analysis Emergency Generator and Wet Well Level Monitoring

Energy Integration and Analysis

CORE+ AMS WW Solutions


FlexFlow IQ Integrates with Lift Station Monitoring

- Lift Station Monitoring
- AC Power
- Pump Failure Alarm
- Wet Well Monitoring

What do we do with the data?

CORE+ AMS Solutions

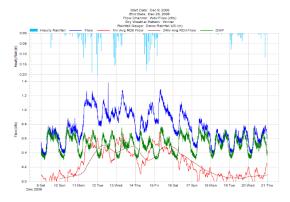
Water Quality Composite Sampling

- Industrial Pollution Monitoring
- Identify common compounds and other water quality characteristics
 - Conventional: Ammonia as N, Biochemical Oxygen on Demand (BOD), Total Suspended Solids (TSS)
 - Toxic: Cyanide
 - Metals: Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Molybdenum, Nickel, Selenium, Silver, Zinc
 - Salts: Total Dissolved Solids (TDS), Chloride
- Device captures hourly water samples throughout a 24-hour period
- Utility or state-certified lab for analysis & reporting

Collection System Capacity Study

- Identify planned development impacts
- Temporary flow metering at specific wastewater collection system points
- Considerations for site plans, current collection
 system observed capacity, I&I impacts
- Professional Engineer analysis **executive summary and detailed supporting data** on the expected impacts on the existing wastewater system capacity (CMOM)
- Short-Term/Long-Term Capacity Study report

What does WW AMI look like?

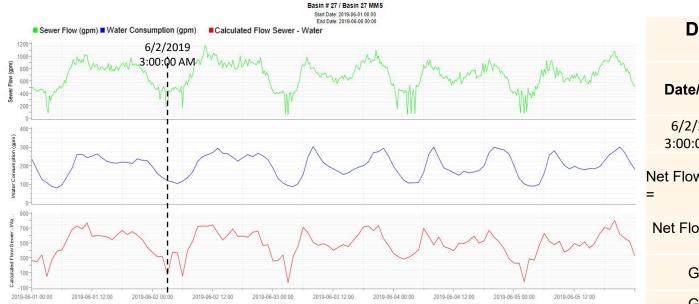

Deploy WW Equipment

Wastewater Data Analysis

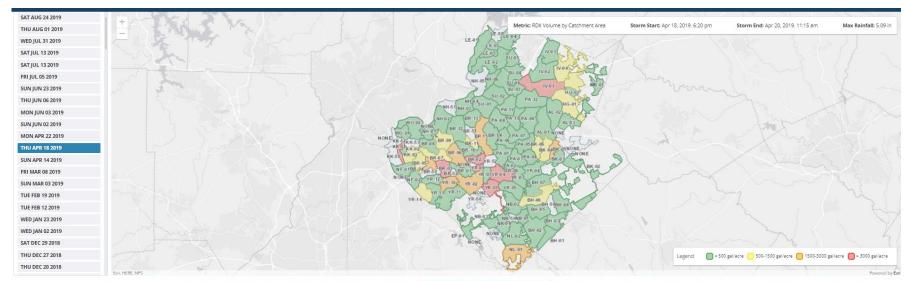
Engineering Data Analytics

Water Data Analysis

CORE

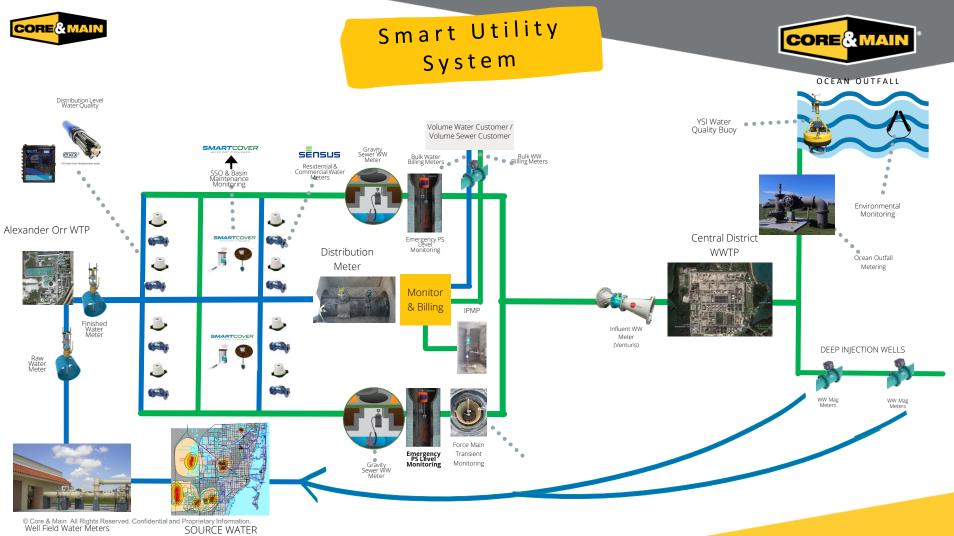


Pilot Basin 27 Results



Date & Time Flow Da	ta						
Selected							

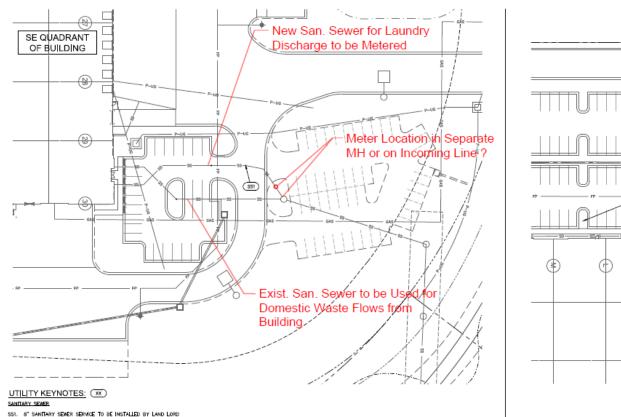
Date/Time	Sewer Flow (gpm)	Water Flow (gpm)	Net Flow (gpm)
6/2/2019 3:00:00 AM	191.2	119.7	71.5
Net Flow (gpm) =	(Sewer Me - (Water C Data)		
Net Flow (gpm) =	191.2 - 11	9.7 = 7	1.5 gpm
GPDIM =	((Net Flow IDM)*1440)) /Total
GPDIM =	(71.5 gpm)	*1440)/	34.9
GPDIM =	2,94	19.7	


Smart Utility Monitoring

Choose Metric:	SITE		CATCHMENT AREA	PIPE LENGTH	PIPE AREA	TOTAL RAINFALL	RDII VOLUME BY CATCHMENT AREA	RDII VOLUME BY PIPE LENGTH	RDII FLOW BY PIPE AREA	PEAK FLOW BY AREA	CV RAIN CAPTURED
RDII VOLUME BY CATCHMENT AREA (GAL/ACRE)	AL-01	DETAILS	83798715 ft²	27.78 mi	192.12 in-mile	0 in	0 gal/acre	0 gal/LF	0 MGD/in-mile	0 MGD/acre	O 96
RDII VOLUME BY PIPE LENGTH (GAL/LF) RDII FLOW BY PIPE AREA (MGD/IN-MILE)	AL-02	DETAILS	85618069 ft ²	26.88 mi	246.58 in-mile	3.56 in	76.09 gal/acre	5563.87 gal/LF	0.01 MGD/in-mile	0 MGD/acre	0.08 %
	AL-03	DETAILS	70618612 ft ²	36.15 mi	231.48 in-mile	3.56 in	462.73 gal/acre	20751.34 gal/LF	0.03 MGD/in-mile	0.001 MGD/acre	0.48 %
	AL-04	DETAILS	54587740 ft ²	16.23 mi	129.77 in-mile	0 in	0 gal/acre	0 gal/LF	0 MGD/in-mile	0 MGD/acre	0.96
PEAK FLOW BY AREA (MGD/ACRE)	BH-01	DETAILS	78538520 ft²	26.94 mi	316.16 in-mile	0 in	0 gal/acre	0 gal/LF	0 MGD/in-mile	0 MGD/acre	0.96
CV RAIN CAPTURED (%)	BH-02	DETAILS	104177468 ft²	21.41 mi	347.47 in-mile	0 in	0 gal/acre	0 gal/LF	0 MGD/in-mile	0 MGD/acre	0 %
	BH-03	DETAILS	61257884 ft²	22.09 mi	208.99 in-mile	0 in	0 gal/acre	0 gal/LF	0 MGD/in-mile	0 MGD/acre	0 %
	BH-04	DETAILS	98316005 ft ²	39.57 mi	263.5 in-mile	4.12 in	358.79 gal/acre	20464.7 gal/LF	0.05 MGD/in-mile	0.002 MGD/acre	0.32 %
	BH-05	DETAILS	44936761 ft ²	20.46 mi	181.58 in-mile	0 in	0 gal/acre	0 gal/LF	0 MGD/in-mile	0 MGD/acre	0 %

© Core & Main All Rights Reserved. Confidential and Proprietary Information.

Nuuly Project


Green Field: Raymore Commerce Center

Nuuly Project

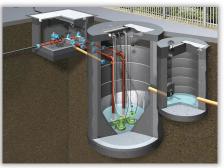
PI

NW QUADRANT O

PAVENENT

© Core & Main All Rights Reserved. Confidential and Proprietary Information.

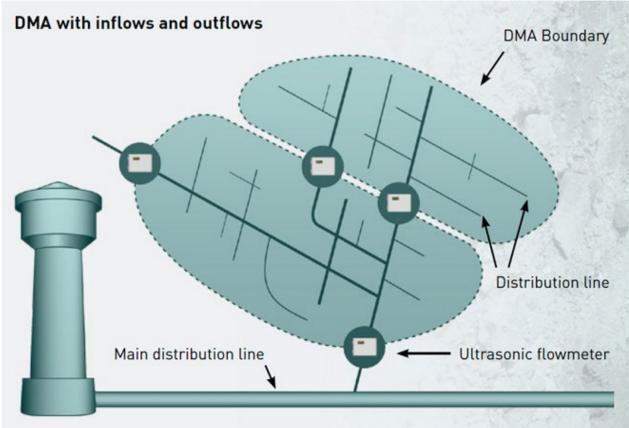
Advanced Monitoring Solutions


Water Quality

Sanitary Sewer Overflow

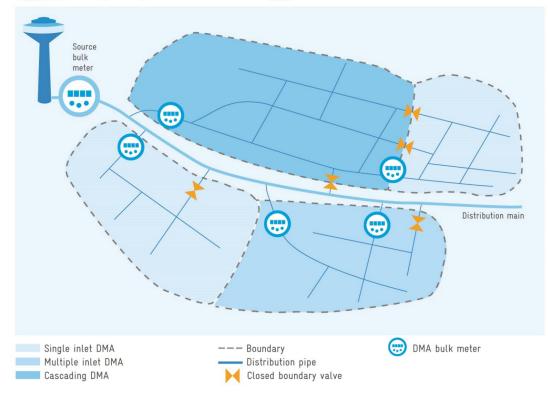
Sewer Main Breaks

Pump Station Early Warning


Storm Preparedness

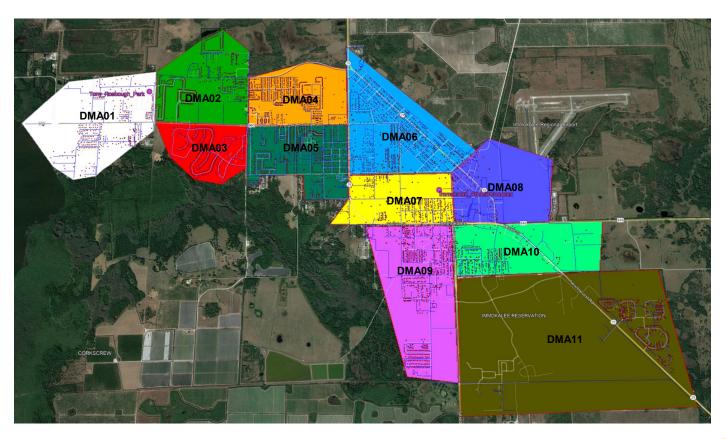
Volume Sewer Customer I&I Analysis

What is District Metering?



What is District Metering?

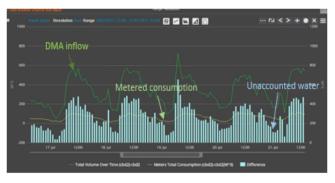
- Segmenting the distribution system
- Analyzing these segments to identify causes of NRW
- Using data to evaluate the effectiveness of remediation and CIP efforts


How do you build a District Metering Analysis

District Metering Areas | Sectioning the distribution network | AVK - YouTube

How do you build a District Metering Analysis

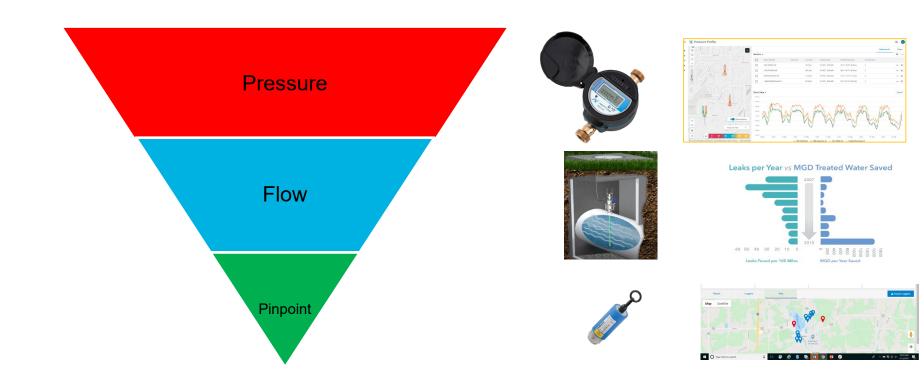
Identify DMAs

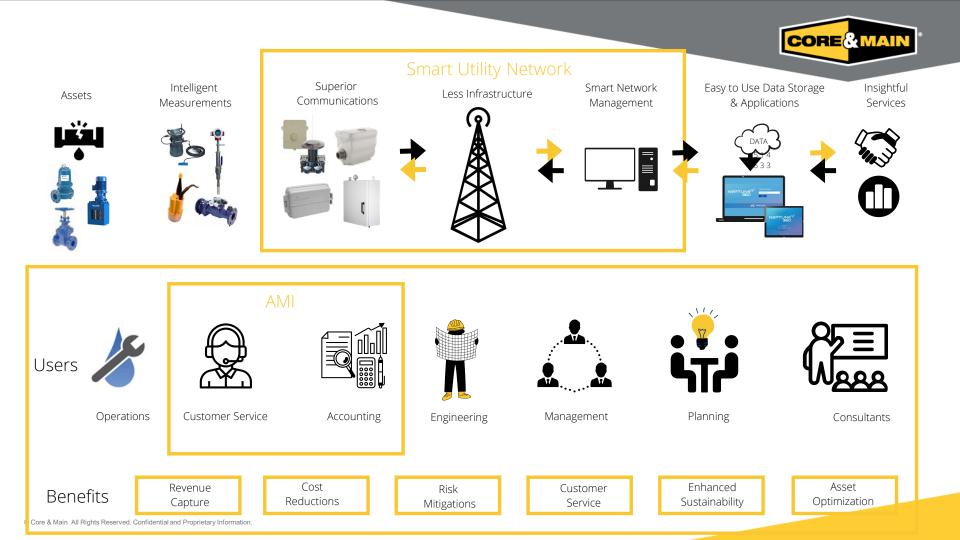


District Metering Software

Virtual District Metering (vDMA) helps utilities create smaller zones in the network and focus efforts on areas with high water loss

Utilities with an existing AMI system already have the foundation for zoned NRW analysis.




vDMA Water Balance

How it all comes together!

Integrated Resiliency Solution

Affordability

Sustainable Communities

Water Loss Management

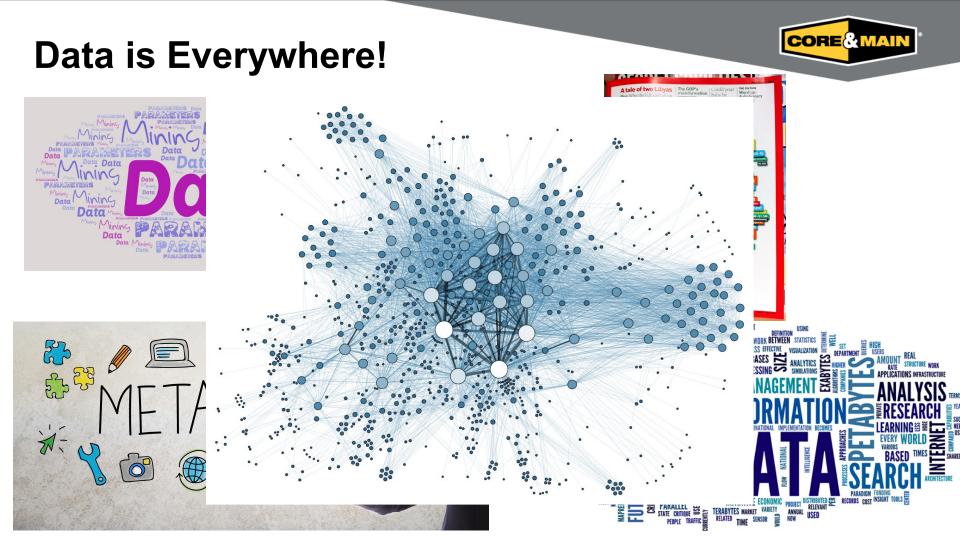
Optimized Asset Mgmt.

Resilience

Emergency Preparedness

LCRR Audit

Operating Efficiencies


Advanced I/I Analysis

Future Proofing

SSO Monitoring

Distribution Level Water Quality Monitoring

Public & Environmental Health

Where Utility Data Is Used....

W & WW AMS Deployment	Meter Reading	Billing / CIS Workflow	Customer Service	
Customer Engagement	Customer Accountability	Customer Anomaly Notification	Water Loss Analysis	Integrations
Worker Order Mobility	Automated Processes	Operations	Engineering/ Flow Analysis	Usage Planning
Analytics	Reporting	Financial Management	Revenue Assurance	Executive Oversight

Go Beyond Smart Make Your City Brilliant

- Wastewater,
- Drinking water
- Freshwater, Source Water
- Environmental & Industrial monitoring
- Create a Brilliant City Platform by combining your existing instrumentation and existing SCADA system with AMI Networks.
- Web-enable your sensors with IoT RTUs for secure enterprisegrade solutions into a regulatory & compliance grade cloud platform, providing the highest quality of secure data.

LCRR – Service Line Identification

- Provide utility with a service line identification audit
 - Pit Set Inlet and Outlet side of meter box
 - Expose through digging or potholing
 - Basement Set At minimum service line type at meter set
 - Additional line exposure as necessary

• Provide utility with searchable, sortable inventory of service line type

- Types identified with photos
 - Lead –visual, scratch test at minimum
 - Galvanized requiring replacement
 - Non-lead
 - Lead status unknown

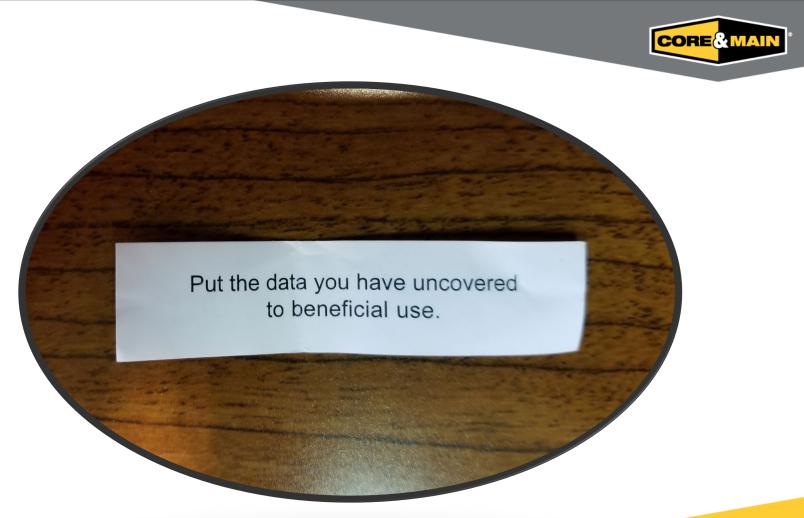
o Other audit items available

- Meter photos
 - Serial numbers
 - Condition
- Pit photos
- Radio photos
- Customer audit (validate account data against meter data)
- Rehabilitation of AMI/AMR system (correct/repair non-functioning meters and

LCRR – Service Line Identification

- Provide GPS coordinates
 - o Standard
 - o Sub-meter
 - o Sub-foot
- Provide interactive map of every customer
 - o Integrate with existing customer portal
- Provide a customer portal if needed
- Provide funding assistance
 - o State SRF
 - o Block grants
 - Financing Government Capital
 - o Infrastructure Bill
 - o Bundling with existing contracts
- Provide Scope of Work and Project Development for future line replacement based on survey findings

Make momma proud. Eat your veggie


THE COWFISH SUSHI · BURGER · BAR

Burgushi: In its prime.

Elvis has left the burger.

